
OpenROAD Tutorial
Open-Source ASIC Design for Computer Architects

Austin Rovinski
Tutu Ajayi

Christopher Batten

Presenters / Organizers

Austin Rovinski
Cornell University

Tutu Ajayi
University of Michigan

Chris Batten
Cornell University

Audience

Computer architects looking to:

● Enhance research with accurate modeling
● Learn the basics about chip design
● Explore OpenROAD and other open-source

resources
● Explore chip design techniques and algorithms

○ Improve hardware design across the stack
○ Improve EDA tools

Motivation

Why should computer architects and researchers care?

● Extending algorithms and techniques to real hardware designs
● More accurate design space exploration
● Hands on experience for job opportunities

Why choose Open Source?

● Easier collaboration using publicly available IP and kits
● Reproducibility and Apples-to-Apples comparison of new

implementations
● Easily re-use publicly available flows, best practices, designs

and IP cores
● Support form the open-source community
● Opportunities for free/sponsored tape-outs
● FREE!

Goals / Schedule

● Introduction to chip design and flow
○ Basic demonstration and illustration

● OpenROAD Tutorial
○ Overview of OpenROAD flows and abstractions
○ Demos and exercises using the OpenROAD flow

● Further discussions
○ OpenROAD limitations
○ OpenROAD roadmap?
○ How can I contribute to OpenROAD?
○ Additional information on other open-source

resources

Chip Design Flow

1. Design Specification and
Algorithm

2. RTL Implementation and
Simulation

3. Synthesis to Gate Level
4. Physical Implementation
5. Verification and Signoff

Design Synthesis Physical
Implementation

Layout

RTL-to-GDS Flow

PDK
Design

Libraries

Verification
Tool A Tool B Tool C

DesignDesign

PDKPDK Design
Libraries
Design

Libraries

LayoutLayout

Design and Flow Preparation

● Design Preparation
○ RTL Files
○ Timing Constraints
○ Design Parameters

● Flow Setup
○ EDA Tool Setup
○ Design selection
○ Process development kit
○ Standard cell libraries

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Synthesis Physical
Implementation Layout

RTL-to-GDS Flow

PDK
Design

Libraries

Verification
Tool A Tool B Tool C

Design Synthesis

● Synthesis transforms RTL to netlist
○ RTL Parsing and Design Elaboration
○ Generic Mapping
○ Generic Optimizations
○ Technology Mapping
○ Technology Driven Optimization
○ Constraint Checking / Adherence

● OpenROAD flows leverages Yosys

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

x = a’bc + a’bc’
y = b’c’ + ab’ + ac

x = a’b
y = b’c’ + ac

INVX1SC(.A(a),.Z(U1));
AND2X1SC(.A(U1),.B(b),.Z(U55));
AND2X1SC(.A(U2),.B(U3),.Z(U23));
OR2X1SC(.A(U23),.B(U21),.Z(y));

OpenROAD Synthesis

Demo

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Synthesis

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Floorplanning

● ASIC Fundamentals
○ Standard Cells
○ Standard Cell Rows
○ Metal Stack
○ Power Grid
○ Macros

● Design Specific
○ Setting Die Area
○ Assigning pin locations
○ Placing hard macros
○ Placing “guides” for cell placement

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Floorplanning

Demo

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Floorplanning

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Placement

● Global Placement
○ Minimize congestion and log wires

● Placement Optimizations
○ Resizing
○ Buffering

● Detail Placement
○ Overlap
○ Orientation

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Placement

Demo

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Placement

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Placement

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Clock Tree Synthesis (CTS)

● Clock trees are built and buffered
● Reducing Skew (setup/hold time)
● Inserting buffers for high fanout

signals

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD CTS

Demo

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD CTS

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Routing

● Global Routing
● Detail Routing
● Routing optimization/fixing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Routing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Demo

OpenROAD Routing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Routing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Finish

● Parasitic extraction
● Timing Signoff
● Dummy Metal Fill
● Export

○ Layout (GDS)
○ Netlist (Verilog)
○ Reports

● KLayout for GDS Export and
Viewing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

OpenROAD Finishing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Demo

OpenROAD Finishing

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Design Verification

● Design Rule Check (DRC)
● Layout vs Schematic (LVS)
● Back-annotated Simulations

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

GDS

● Ready to send to fab!

RTL Synthesis Floorplan Place CTS Route Finish Verification GDS

Break

OpenROAD-flow-scripts/
├── docker
├── flow
│ ├── designs
│ ├── platforms
│ ├── scripts
│ ├── test
│ ├── tutorials
│ └── util
├── jenkins
└── tools OpenROAD, yosys source repos; binaries

OpenROAD-flow-scripts Structure

Flow repository
Dockerfiles (containerization)
Flow - everything happens here!

Source RTL, configs, constraints for sample designs
Platform data (.lib, .lef, .gds, etc.), configs

Tcl scripts for OpenROAD, yosys

Utility scripts (package issues, collect data, other misc.)

Test scripts and run directory
Tutorials (WIP)

Continuous integration (CI)

Platform Configs vs. Design Configs

├── platforms
│ └── [PLATFORM]
│ └── config.mk
└── designs
 └── [PLATFORM]
 └── config.mk

export TECH_LEF = ...
export SC_LEF = ...
export LIB_FILES = ...
export GDS_FILES = ...

export CELL_PAD_IN_SITES_GLOBAL_PLACEMENT ?= ...
export CELL_PAD_IN_SITES_DETAIL_PLACEMENT ?= ...
export PLACE_DENSITY ?= ...export DESIGN_NAME = ...

export PLATFORM = ...
export VERILOG_FILES = ...
export SDC_FILE = ...
export DIE_AREA = ...
export CORE_AREA = ...

export PLACE_DENSITY = ...

Technology files

Good default
parametersDesign files

Parameter overrides

Debugging Common Design Problems

What Do Messages Mean?

● INFO: Report data, status, or current progress
● WARNING: Unexpected situation, but tools will do best to

continue
○ Designer should fix warnings or validate they are benign

● ERROR: Unexpected situation, tools cannot work around issue
● CRIT: openroad must exit immediately (rare)

○ All segfaults / asserts / crashes are bugs :)

Debugging Strategy

● Review error which caused flow to abort
● Check warnings and errors starting from beginning of flow

○ Early warnings can be cause of later errors
● Try to identify root cause of issue

○ Designer problem?
○ Tool problem?
○ Unrealistic expectations?

Common Problems and Solutions

● Utilization too high - fails placement
○ Increase die area or decrease core utilization

● Utilization too high - fails resizing
○ Check for proper SDC constraints
○ Check that user-generated macros have reasonable constraints (e.g. good .lib files)

● Congestion too high - fails global routing
○ Try previous fixes
○ Try decreasing layer adjustment

● Congestion too high - fails detail routing
○ Try previous fixes
○ Try adding cell padding to space cells further apart
○ If violations always occur on same cell(s), try marking those cells as dont_use

● Design too small - fails PDN generation
○ Try increasing design size or reducing power grid pitch

Common Problems and Solutions

● Design runtime too long
○ Increase utilization if too low
○ Relax timing constraints
○ Reduce design complexity
○ Faster machine :)

● Failing setup time
○ Hard problem - may just need to reduce constraints
○ Change architecture: more pipelining, reduce complexity

● Failing hold time
○ Check that user cells (e.g. SRAM) are properly constrained
○ Check design constraints are valid (SDC)

■ Designs with multiple clocks are tricky!
○ Check that your PDK has properly correlated parasitics

Exercises 1 & 2

Analyzing Your Design

Reporting Chip Metrics – Area
● Different area numbers mean different things
● Some metrics assume 100% utilization – 70-90% more typical
● Buffering and clock tree can add significant area (20%+)
● Chip I/O (pad rings, etc.) & fab markers (fiducials, etc.) rarely accounted for
● Test interfaces can add significant area too!

Logic SRAM Buffers Clock tree Chip I/O Fab
Markers

Unutilized
Space

Synthesized ✓ ✓ Some ✖ Usually no ✖ ✖

Placed & Routed ✓ ✓ ✓ ✓ Usually no ✖ ✖

“Die area” ✓ ✓ ✓ ✓ Sometimes Usually no ✓

“Die size” ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reporting Chip Metrics – Power

● Buffers and clock tree consume significant power (40%+)
● Chip I/O can be simulated but usually isn’t
● Simulation type makes a huge difference!

○ Activity factor vs. switching activity (SAIF) vs. vector (VCD)

Logic SRAM Buffers Clock tree Chip I/O Supply
losses

Synthesized ✓ ✓ Some ✖ Usually no ✖

Placed & Routed ✓ ✓ ✓ ✓ Usually no ✖

Real chip ✓ ✓ ✓ ✓ Sometimes ✖

Wall power ✓ ✓ ✓ ✓ ✓ ✓

Reporting Chip Metrics – Frequency

● Classic synthesis can provide mediocre/poor estimates of real chip frequency
● Physical synthesis provides much better estimates
● Place & route offers excellent estimates

○ Typical, best, worst, and other modeling corners
● Real chips have a distribution of frequencies and are binned

Parasitics model Gate timing model Clock tree model

Synthesis Wire-load Usually “typical corner” Ideal

Physical Synthesis Estimated Usually “typical corner” Estimated

Placed & Routed Extracted Usually “typical corner” Extracted

Real chip Binned

Demo 2

Exercise 3

Exercise 4

Demo 3

Exercise 5

Limitations and Future Directions

OpenROAD Roadmap – Active Projects

● Ease of use
○ Simplify install process
○ Broaden OS support
○ Python API, Python module
○ Documentation improvements

● Improved support
○ Support and tune additional PDKs
○ Support additional technology rules

● Enhanced features
○ Hierarchical implementation
○ Universal Power Format (UPF) support

● Maintenance
○ Code cleanup and optimization

OpenROAD Roadmap – Long-term Projects

● Enhanced Features
○ Vector-based power calculation
○ CCS timing engine
○ Incremental implementation

● COPILOT: >100x improvement to tool throughput
○ Massively distributed workloads

● ML-based EDA
○ Interfaces for data collection
○ ML-guided optimization

● Education and outreach
○ Courses, tutorials, and more!

OpenROAD Limitations

● Ease of use
○ Mediocre support for SystemVerilog (yosys)
○ Lack of design checking / sanity checking

● Quality of Results
○ No multi-Vt flow yet
○ No automatic clock gating yet
○ Lacking quality hierarchical implementation

■ Slow runtime on large designs
● Design features

○ Hierarchical extraction accuracy is limited
○ Analog / mixed signal support is very preliminary

OpenROAD Advantages

● Accessibility
○ No license limitations / license servers!

■ Run 100s of OpenROAD instances for free
○ Access to source code for debugging / modification
○ Share and get help with tool questions (no paywalls)

● Active community
○ Updates nearly daily
○ Issues fixed and upstreamed in days, not months
○ Pull requests accepted for any useful fixes / features

● Reproducibility
○ Easy to package designs and reproduce exactly
○ Able to validate other’s research

Demo 4

OpenLane vs. OpenROAD-flow-scripts

● Based off OpenROAD, yosys
● Support for several PDKs
● Focus on full-chip closed-source

signoff
● Make-based flow
● Supports Docker, native

execution
● Maintained by OpenROAD team

● Based off OpenRoad, yosys
● Support only for sky130
● Focus full-chip open-source

signoff for sky130
● Tcl-based flow
● Only supports Docker
● Maintained by Efabless

Thank you for attending!

